我们提出了一个通过信息瓶颈约束来学习CAPSNET的学习框架的框架,该框架将信息提炼成紧凑的形式,并激励学习可解释的分解化胶囊。在我们的$ \ beta $ -capsnet框架中,使用超参数$ \ beta $用于权衡解开和其他任务,使用变异推理将信息瓶颈术语转换为kl divergence,以近似为约束胶囊。为了进行监督学习,使用类独立掩码矢量来理解合成的变化类型,无论图像类别类别,我们通过调整参数$ \ beta $来进行大量的定量和定性实验,以找出分离,重建和细节之间的关系表现。此外,提出了无监督的$ \ beta $ -capsnet和相应的动态路由算法,以学习范围的方式,以一种无监督的方式学习解散胶囊,广泛的经验评估表明我们的$ \ beta $ -CAPPAPSNET可实现的是先进的分离性截止性性能比较在监督和无监督场景中的几个复杂数据集上的CAPSNET和各种基线。
translated by 谷歌翻译
持续学习旨在快速,不断地从一系列任务中学习当前的任务。与其他类型的方法相比,基于经验重播的方法表现出了极大的优势来克服灾难性的遗忘。该方法的一个常见局限性是上一个任务和当前任务之间的数据不平衡,这将进一步加剧遗忘。此外,如何在这种情况下有效解决稳定性困境也是一个紧迫的问题。在本文中,我们通过提出一个通过多尺度知识蒸馏和数据扩展(MMKDDA)提出一个名为Meta学习更新的新框架来克服这些挑战。具体而言,我们应用多尺度知识蒸馏来掌握不同特征级别的远程和短期空间关系的演变,以减轻数据不平衡问题。此外,我们的方法在在线持续训练程序中混合了来自情节记忆和当前任务的样品,从而减轻了由于概率分布的变化而减轻了侧面影响。此外,我们通过元学习更新来优化我们的模型,该更新诉诸于前面所看到的任务数量,这有助于保持稳定性和可塑性之间的更好平衡。最后,我们对四个基准数据集的实验评估显示了提出的MMKDDA框架对其他流行基线的有效性,并且还进行了消融研究,以进一步分析每个组件在我们的框架中的作用。
translated by 谷歌翻译
图形神经网络(GNN)是通过学习通用节点表示形式来建模和处理图形结构数据的主要范例。传统的培训方式GNNS取决于许多标记的数据,这导致了成本和时间的高需求。在某个特殊场景中,它甚至不可用。可以通过图形结构数据本身生成标签的自我监督表示学习是解决此问题的潜在方法。并且要研究对异质图的自学学习问题的研究比处理同质图更具挑战性,对此,研究也更少。在本文中,我们通过基于Metapath(SESIM)的结构信息提出了一种用于异质图的自我监督学习方法。提出的模型可以通过预测每个Metapath中节点之间的跳跃数来构建借口任务,以提高主任务的表示能力。为了预测跳跃数量,Sesim使用数据本身来生成标签,避免了耗时的手动标签。此外,预测每个Metapath中的跳跃数量可以有效地利用图形结构信息,这是节点之间的重要属性。因此,Sesim加深对图形结构模型的理解。最后,我们共同培训主要任务和借口任务,并使用元学习来平衡借口任务对主要任务的贡献。经验结果验证了SESIM方法的性能,并证明该方法可以提高传统神经网络在链接预测任务和节点分类任务上的表示能力。
translated by 谷歌翻译
持续学习旨在通过以在线学习方式利用过去获得的知识,同时能够在所有以前的任务上表现良好,从而学习一系列任务,这对人工智能(AI)系统至关重要,因此持续学习与传统学习模式相比,更适合大多数现实和复杂的应用方案。但是,当前的模型通常在每个任务上的类标签上学习一个通用表示基础,并选择有效的策略来避免灾难性的遗忘。我们假设,仅从获得的知识中选择相关且有用的零件比利用整个知识更有效。基于这一事实,在本文中,我们提出了一个新框架,名为“选择相关的在线持续学习知识(SRKOCL),该框架结合了一种额外的有效频道注意机制,以选择每个任务的特定相关知识。我们的模型还结合了经验重播和知识蒸馏,以避免灾难性的遗忘。最后,在不同的基准上进行了广泛的实验,竞争性实验结果表明,我们提出的SRKOCL是针对最先进的承诺方法。
translated by 谷歌翻译
不平衡的分类问题成为数据挖掘和机器学习中的重要和具有挑战性问题之一。传统分类器的性能将受到许多数据问题的严重影响,例如类不平衡问题,类重叠和噪声。 Tomek-Link算法仅用于在提出时清理数据。近年来,已经报道了将Tomek-Link算法与采样技术结合起来。 Tomek-Link采样算法可以有效地减少数据上的类重叠,删除难以区分的多数实例,提高算法分类精度。然而,Tomek-Links下面采样算法仅考虑全局彼此的最近邻居并忽略潜在的本地重叠实例。当少数群体实例的数量很小时,取样效果不令人满意,分类模型的性能改善并不明显。因此,在Tomek-Link的基础上,提出了一种多粒度重新标记的取样算法(MGRU)。该算法完全考虑了本地粒度子空间中的数据集的本地信息,并检测数据集中的本地潜在重叠实例。然后,根据全局重新标记的索引值消除重叠的多数实例,这有效地扩展了Tomek-Link的检测范围。仿真结果表明,当我们选择欠采样的最佳全局重新标记索引值时,所提出的下采样算法的分类准确性和泛化性能明显优于其他基线算法。
translated by 谷歌翻译
多视图学习是一个学习问题,它利用对象的各种表示来挖掘宝贵的知识并提高学习算法的性能,并且多视图学习的重要方向之一是子空间学习。正如我们所知,自动编码器是深度学习的方法,它可以通过重建输入来学习原始数据的潜在特征,并基于这一点,我们提出了一种名为基于自动编码器的共训练多视图学习的新算法(ACMVL)利用互补性和一致性,并找到多个视图的联合潜在特征表示。该算法有两个阶段,首先是培训每个视图的自动编码器,第二阶段是训练监督网络。有趣的是,两个阶段部分地分享权重,并通过共同培训过程互相帮助。根据实验结果,我们可以学习良好的潜在特征表示,并且每个视图的自动编码器具有比传统的自动编码器更强大的重建能力。
translated by 谷歌翻译
多视图学习通过LEVERAG-ING-ING-ING相同对象之间的关系来完成分类的任务目标。大多数现有方法通常关注多个视图之间的一致性和互补性。但并非所有这些信息都非常有用于分类任务。相反,它是扮演重要作用的具体辨别信息。钟张等。通过联合非负矩阵分组探讨不同视图中的共同视图中存在的判别和非歧视信息。在本文中,我们通过使用跨熵损耗函数来改善该算法来改善目标函数更好。最后,我们在相同数据集上的原始实施更好的分类效果,并在许多最先进的算法上显示其优越性。
translated by 谷歌翻译
近年来,在线增量学习中兴趣增长。然而,这方面存在三个主要挑战。第一个主要困难是概念漂移,即流数据中的概率分布会随着数据到达而改变。第二个重大困难是灾难性的遗忘,即忘记在学习新知识之前学到的东西。我们经常忽略的最后一个是学习潜在的代表。只有良好的潜在表示可以提高模型的预测准确性。我们的研究在此观察中建立并试图克服这些困难。为此,我们提出了一种适应性在线增量学习,用于不断发展数据流(AOL)。我们使用带内存模块的自动编码器,一方面,我们获得了输入的潜在功能,另一方面,根据自动编码器的重建丢失与内存模块,我们可以成功检测存在的存在概念漂移并触发更新机制,调整模型参数及时。此外,我们划分从隐藏层的激活导出的特征,分为两个部分,用于分别提取公共和私有特征。通过这种方法,该模型可以了解新的即将到来的实例的私有功能,但不要忘记我们在过去(共享功能)中学到的内容,这减少了灾难性遗忘的发生。同时,要获取融合特征向量,我们使用自我关注机制来有效地融合提取的特征,这进一步改善了潜在的代表学习。
translated by 谷歌翻译
多视图学习可以更全面地涵盖数据样本的所有功能,因此多视图学习引起了广泛的关注。传统的子空间聚类方法,如稀疏子空间群集(SSC)和低排名子空间群集(LRSC),为单个视图簇聚集亲和矩阵,从而忽略视图之间的融合问题。在我们的文章中,我们提出了一种基于注意力和AutoEncoder(MSALAA)的新的多视图子空间自适应学习。该方法组合了深度自动统计器和用于对齐各种视图的自我表示的方法,以在多视图低级稀疏子空间聚类(MLRSSC)中,这不仅可以将能力提高到非线性拟合,而且也可以满足多视图学习的一致性与互补原则。我们经验遵守六个现实生活数据集的现有基线方法的重大改进。
translated by 谷歌翻译
多视图学习尝试通过利用多视图数据之间的共识和/或互补性来生成具有更好性能的模型。然而,就互补性而言,大多数现有方法只能找到单一互补性而不是多样性的互补信息。在本文中,为了同时利用互补性和一致性,对多视图代表学习的互相促进互补性的深度学习的潜力,提出了一种新的监督多视图表示学习算法,称为自我关注具有多样性促进互补性的多视图网络(SAMVDPC)通过一组编码器利用一致性,使用自我关注查找需要多样性的互补信息。在八个现实世界数据集上进行的广泛实验已经证明了我们所提出的方法的有效性,并在几种基线方法上显示出优于的优势,只考虑单个互补信息。
translated by 谷歌翻译